The D-2-hydroxyacid dehydrogenase incorrectly annotated PanE is the sole reduction system for branched-chain 2-keto acids in Lactococcus lactis.

نویسندگان

  • Emilie Chambellon
  • Liesbeth Rijnen
  • Frédérique Lorquet
  • Christophe Gitton
  • Johan E T van Hylckama Vlieg
  • Jeroen A Wouters
  • Mireille Yvon
چکیده

Hydroxyacid dehydrogenases of lactic acid bacteria, which catalyze the stereospecific reduction of branched-chain 2-keto acids to 2-hydroxyacids, are of interest in a variety of fields, including cheese flavor formation via amino acid catabolism. In this study, we used both targeted and random mutagenesis to identify the genes responsible for the reduction of 2-keto acids derived from amino acids in Lactococcus lactis. The gene panE, whose inactivation suppressed hydroxyisocaproate dehydrogenase activity, was cloned and overexpressed in Escherichia coli, and the recombinant His-tagged fusion protein was purified and characterized. The gene annotated panE was the sole gene responsible for the reduction of the 2-keto acids derived from leucine, isoleucine, and valine, while ldh, encoding L-lactate dehydrogenase, was responsible for the reduction of the 2-keto acids derived from phenylalanine and methionine. The kinetic parameters of the His-tagged PanE showed the highest catalytic efficiencies with 2-ketoisocaproate, 2-ketomethylvalerate, 2-ketoisovalerate, and benzoylformate (V(max)/K(m) ratios of 6,640, 4,180, 3,300, and 2,050 U/mg/mM, respectively), with NADH as the exclusive coenzyme. For the reverse reaction, the enzyme accepted d-2-hydroxyacids but not l-2-hydroxyacids. Although PanE showed the highest degrees of identity to putative NADP-dependent 2-ketopantoate reductases (KPRs), it did not exhibit KPR activity. Sequence homology analysis revealed that, together with the d-mandelate dehydrogenase of Enterococcus faecium and probably other putative KPRs, PanE belongs to a new family of D-2-hydroxyacid dehydrogenases which is unrelated to the well-described D-2-hydroxyisocaproate dehydrogenase family. Its probable physiological role is to regenerate the NAD(+) necessary to catabolize branched-chain amino acids, leading to the production of ATP and aroma compounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivation of the panE gene in Lactococcus lactis enhances formation of cheese aroma compounds.

Hydroxyacid dehydrogenases limit the conversion of α-keto acids into aroma compounds. Here we report that inactivation of the panE gene, encoding the α-hydroxyacid dehydrogenase activity in Lactococcus lactis, enhanced the formation of 3-methylbutanal and 3-methylbutanol. L. lactis IFPL953ΔpanE was an efficient strain producing volatile compounds related to cheese aroma.

متن کامل

Identification, cloning, and characterization of a Lactococcus lactis branched-chain alpha-keto acid decarboxylase involved in flavor formation.

The biochemical pathway for formation of branched-chain aldehydes, which are important flavor compounds derived from proteins in fermented dairy products, consists of a protease, peptidases, a transaminase, and a branched-chain alpha-keto acid decarboxylase (KdcA). The activity of the latter enzyme has been found only in a limited number of Lactococcus lactis strains. By using a random mutagene...

متن کامل

Common enzymes of branched-chain amino acid catabolism in Pseudomonas putida.

Two types of Pseudomonas putida PpG2 mutants which were unable to degrade branched-chain amino acids were isolated after mutagenesis and selection for ability to grow on succinate, but not valine, as a sole source of carbon. These isolates were characterized by growth on the three branched-chain amino acids (valine, isoleucine, and leucine), on the corresponding branched-chain keto acids (2-ket...

متن کامل

Enhancement of 2-methylbutanal formation in cheese by using a fluorescently tagged Lacticin 3147 producing Lactococcus lactis strain.

The amino acid conversion to volatile compounds by lactic acid bacteria is important for aroma formation in cheese. In this work, we analyzed the effect of the lytic bacteriocin Lacticin 3147 on transamination of isoleucine and further formation of the volatile compound 2-methylbutanal in cheese. The Lacticin 3147 producing strain Lactococcus lactis IFPL3593 was fluorescently tagged (IFPL3593-G...

متن کامل

Uptake of α-ketoglutarate by citrate transporter CitP drives transamination in Lactococcus lactis.

Transamination is the first step in the conversion of amino acids into aroma compounds by lactic acid bacteria (LAB) used in food fermentations. The process is limited by the availability of α-ketoglutarate, which is the best α-keto donor for transaminases in LAB. Here, uptake of α-ketoglutarate by the citrate transporter CitP is reported. Cells of Lactococcus lactis IL1403 expressing CitP show...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 191 3  شماره 

صفحات  -

تاریخ انتشار 2009